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The creeping motion of a hydrodynamically ‘Janus’ spherical particle, whose surface
is partitioned into two distinct regions, is investigated. On one region, fluid adjacent
to the particle obeys the no-slip condition, whereas on the other, fluid slips past the
particle. The fore-aft asymmetry of this ‘slip–stick’ sphere (Swan & Khair, J. Fluid
Mech., vol. 606, 2008, p. 115) leads to a number of interesting results when it is
placed in different flows, which is illustrated by computing the particle motion to first
order in the ratio of slip length to particle radius. For example, in a pure straining
field the sphere attains an equilibrium orientation either along the compressional or
extensional axis of the flow, depending on the ratio of slip-to-stick surface areas. In
a simple shear flow, on the other hand, the slip–stick sphere undergoes a periodic
rotational motion, or Jeffrey orbit. Moreover, depending on its initial orientation, the
particle can either follow a periodic translational orbit or undergo a net displacement
along the flow direction. Lastly, to first order in the volume fraction of slip–stick
spheres, the suspension rheology is non-Newtonian, with non-zero first and second
normal stress differences.

1. Introduction
The last decade has witnessed spectacular progress in the fabrication of nanoscale

colloidal particles with anisotropic shapes and surface properties (Glotzer & Solomon
2007). Recent reviews by Perro et al. (2005) and Walther & Muller (2008) have focused
on a particularly fascinating subset of these particles known as ‘Janus’ spheres – named
after the double-headed Roman god – which possess two ‘faces’ that can be designed
to be chemically (Roh, Martin & Lahann 2005; Hong, Jian & Granick 2006; Nie
et al. 2006), electrically (Takei & Shimizu 1997; Cayre, Paunov & Velev 2003) or
magnetically (Velev, Lenhoff & Kaler 2000) distinct. The potential applications of
Janus particles are wide ranging and include switchable display devices (Nisisako
et al. 2006), micro-rheological probes (Behrend et al. 2005) and emulsification agents
(Casagrande et al. 1989; Glaser et al. 2006). Furthermore, the dual-faced nature of
a Janus particle can lead to directed motion in the presence of an applied field,
which may be of interest in the context of microfluidics. For example, Gangwal
et al. (2008) fabricated ‘metallodielectric’ Janus microspheres with one dielectric and
one metal-coated hemisphere. When suspended in an aqueous electrolyte, application
of an AC electric field causes such a particle to steadily translate perpendicular
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to the field via induced-charge electrophoresis, in agreement with the theoretical
predictions of Squires & Bazant (2006). Moreover, Janus particles can be designed
to create localized gradients and therefore move autonomously. On this note, Howse
et al. (2007) constructed a microscale Janus swimmer consisting of a polystyrene
sphere with one platinum-coated hemisphere. The platinum acts as a catalyst for
the reduction of hydrogen peroxide (the ‘fuel’); the resulting asymmetric distribution
of reaction products generates a local gradient in osmotic pressure that propels the
microswimmer. In this paper, we consider theoretically a Janus particle whose two
faces are distinct from a hydrodynamic viewpoint, such that on one face fluid adjacent
to the particle satisfies the no-slip condition, whereas on the other, fluid slips past the
particle. Before venturing into the specifics of the present work, however, we briefly
review some fundamental aspects of slip at fluid–solid interfaces.

For a solid surface, the most commonly used boundary condition for the velocity
field is the no-slip (or stick) condition, which states that the velocity of a fluid element
adjacent to a surface is equal to the velocity of the surface. It is important, however,
to note that the no-slip boundary condition is an assumption that cannot be proved
rigorously. Indeed, the classic monographs of Lamb (1932) and Batchelor (1973) state
that while the no-slip condition is, in most cases, obeyed, there may exist certain
situations in which slip does occur. In a recent review, Lauga, Brenner & Stone
(2007) discussed two general mechanisms that may cause slip. The first is molecular
or intrinsic slip, wherein individual fluid molecules move relative to a solid surface
through the action of hydrodynamic (shear) forces. The second mechanism is that of
effective or apparent slip. Here, microscopic inhomogeneities at a fluid–solid interface
give rise to an effective slip at the macroscopic scale.

Approximately 200 years ago, Navier (1823) proposed a phenomenological
boundary condition that remains to this day the simplest and most commonly used
model for slip at fluid–solid boundaries. The so-called ‘Navier slip condition’ states
that the tangential velocity of a fluid element relative to a solid surface is proportional
to the rate of strain of the element. The scalar constant of proportionality is known
as the slip length λ. Mathematically, the Navier slip condition can be written as

ui − Ui = 2λ(δij − ninj )Ejknk, (1.1)

where ui and Ui are the velocity of the fluid and solid surfaces, respectively; ni

is the unit normal vector pointing into the fluid; δij is the identity tensor; and
Eij = (1/2)(∂ui/∂xj + ∂uj/∂xi) is the rate of strain tensor with xi as the position
vector. The slip velocity is simply the difference between the fluid and surface velocities,
ui −Ui . Clearly, if λ= 0 one recovers the no-slip condition; at the opposite extreme, as
λ → ∞, the tangential strain at the surface vanishes. Note that while the Navier slip
condition allows for a non-zero tangential slip velocity, the relative velocity normal
to the fluid–solid interface, ni(ui − Ui), must equal zero as fluid cannot pass through
the surface. Importantly, in (1.1) the slip length λ is assumed to be independent of the
shear rate γ̇ =

√
2EijEji , with the consequence that the Navier boundary condition

is linear in the fluid velocity. Molecular Dynamics simulations of simple shear flow
between parallel plates by Thompson & Troian (1997) verified that the Navier slip
condition is valid for sufficiently low shear rates; at higher shear rates, however, λ is
found to grow in a nonlinear manner with γ̇ .

A simple example of the effect of slip is provided by considering pressure-driven
flow through a circular channel of radius a. If fluid does not slip at the channel
walls one recovers the classic Hägen–Poiseuille velocity profile, and the flow rate
through the channel is given by Q =(πa4/8μ0)�P , where μ0 is the viscosity and
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�P is the applied pressure gradient. If the channel exhibits slip, however, a slip
flow proportional to the shear rate at the wall is generated, and the ratio of slip
to no-slip flow rates is Qslip/Q = 1 + 4λ/a. The above example is, in fact, used as
the basis for measuring slip lengths experimentally (Cheng & Giordano 2002; Choi
et al. 2003). In this technique it is assumed, by construction, that the Navier slip
condition applies throughout the domain of interest. However, in a micro-fabricated
channel, for example, one expects some degree of heterogeneity as a consequence
of the manufacturing process or via contamination of the walls by molecules in the
surrounding fluid. For example, it has been postulated (Lauga & Stone 2003) that
the large values of slip length measured for pressure-driven flow of water through
hydrophobically coated capillaries is due to nucleation of ‘nano-bubbles’ at the walls
(Tyrrell & Attard 2001); the nano-bubbles act as zero shear stress (infinite slip length)
patches. Thus, it is possible that the local slip length may vary with position along
a channel. What is actually being measured in a pressure drop versus flow rate
experiment, then, is an effective slip length averaged across a portion of the channel
(Lauga et al. 2007). This issue was addressed by Lauga & Stone (2003) (see also
Philip 1972a , b), who computed the effective slip length for pressure-driven flow
through a cylindrical channel whose surface is patterned, either parallel or transverse
to the pressure gradient, into alternating regions of no-slip (λ= 0) and no shear
(λ → ∞). Similarly, Priezjev, Darhuber & Troian (2005) compared the velocity fields
and effective slip length from Molecular Dynamics simulations to solution of the
Stokes equations for a parallel plate geometry in which the top plate translates at
constant velocity while the stationary bottom plate is patterned into periodic strips of
perfect slip and finite slip. When the strip widths are greater than 10 fluid molecular
diameters each, the two methods are in excellent agreement. For smaller strip widths,
the bottom plate appears molecularly rough, and the effective slip length computed
from Molecular Dynamics simulations is lesser than that from the Stokes equations.

One can also consider the effects of slip on the motion of particles in a viscous
fluid. For instance, Basset (1961) examined an isotropically slipping sphere of radius
a under the action of an applied force Fi at low Reynolds numbers. The velocity
acquired by the sphere Ui is equal to

Ui =

(
1 + 3λ/a

1 + 2λ/a

)
Fi

6πμ0a
. (1.2)

For a no-slip sphere (λ= 0), one recovers the Stokes drag, Ui =Fi/6πμ0a. As λ
increases the shear stress on the particle surface diminishes, causing the velocity to
increase. Ultimately, as λ/a → ∞ one finds Ui =Fi/4πμ0a, which is also equal to
the velocity of a translating spherical bubble. This is unsurprising as the boundary
conditions on the surface of a bubble – no relative normal velocity and zero tangential
stress – are the same as those for a perfectly slipping sphere. Note that as the slip
length is uniform over the sphere’s surface, the mobility of the particle is isotropic;
that is, the sphere translates solely in the direction of the applied force.

From the above discussion, a question that naturally arises is: what is the velocity
of the sphere when the slip length is not uniform over its surface? Swan & Khair
(2008) have addressed this question by analysing a simple model system for a
hydrodynamically Janus particle – the ‘slip–stick’ sphere, whose surface is partitioned
into two distinct regions. Over one region, fluid obeys the no-slip condition and over
the other, fluid slips according to the Navier boundary condition (see figure 1). In the
small-slip-length limit λ/a � 1, they derived Faxén-type laws relating the translational
and rotational motions of a slip–stick sphere to the various moments of force density
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Figure 1. Definition sketch for a hydrodynamically Janus slip–stick sphere of radius a in a
linear flow. Fluid slips over the surface S1 whereas the no-slip condition is obeyed on surface
S2; the relative surface areas of S1 and S2 are set by the ‘slipping’ angle α. The slip–stick
asymmetry is characterized by the director di , which is a unit vector perpendicular to the
slip–stick dividing plane and pointing into the slip side S1. The orientation of di with respect
to a right-handed Cartesian coordinate system is given by two angles: (i) equatorial angle φ
measuring the angle between the director and the x3 axis; and (ii) polar angle θ measuring the
angle between di and the x2 axis. In the sketch a representative shear flow u3 = γ̇ x1 (with γ̇
the shear rate) in the x3–x1 (velocity–velocity gradient) plane is shown.

on its surface. For example, application of a force Fi on a slip–stick sphere causes it
to translate with a velocity Ui given by (see appendix C)

Ui =

(
1 +

λ

8a

[
(4 − cos3 α − 3 cosα)δij − 3 cosα sin2 α didj

]) Fj

6πμ0a
+ O(λ/a)2,

(1.3)

where α is the dividing or slipping angle demarcating the slip and no-slip parts
of the surface (see figure 1), and di denotes the symmetry axis, or director, of the
particle. Clearly, if α = 0 the entire surface is no-slip and we recover Stokes drag;
for α = π the entire surface (slightly) slips and Ui =(1 + λ/a)Fi/6πμ0a in agreement
with (1.2) for λ/a � 1. More interestingly, for intermediate values of α, the mobility
of the sphere is no longer isotropic (except for the special case of a half-slipping
sphere α = π/2); that is, generally, the slip–stick sphere does not translate solely in
the direction of the applied force. The key point is that the Janus nature of the
sphere’s surface dictates that while the particle is geometrically spherical, it is no
longer spherically symmetric from a hydrodynamic viewpoint. The slip–stick sphere
is a body of revolution, nonetheless, and in analogy with other axisymmetric bodies
in Stokes flow (e.g. a spheroid), the resistances to motion parallel and perpendicular
to the symmetry axis are, in general, different.

We would like to emphasize here that hydrodynamically Janus particles may
actually be observed in a variety of physical settings. It was shown by Boehnke
et al. (1999) that a non-neutrally buoyant hydrophobic micron-sized particle when
immersed in a polar suspending fluid settles with a velocity that is about 20 %
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greater than that predicted by Stokes drag. This increase in the settling speed was
attributed to the presence of nanometre-sized air bubbles attached to the surface of
the sphere. The bubbles serve as zero shear stress regions for the suspending fluid,
and Boehnke et al. (1999) ascribed to the surface an isotropic effective slip length of
λ/a = 0.5. By analogy, an amphiphilic Janus sphere – such as made by Casagrande
et al. (1989) – when immersed in a polar liquid should also have nano-bubbles
attached to its hydrophobic hemisphere, thus endowing that face with an effective
slip length. On the other hand, the hydrophilic hemisphere should be a bubble-free
no-slip boundary. Particles with surfaces partitioned into slip and no-slip regions may
also be encountered in other physical situations. For example, vesicles synthesized
from a mixture of two different double-chain surfactants typically display ‘solid’ and
‘fluid’ domains at temperatures intermediate to the phase transition temperatures
of the two components (Korlach et al. 1999; Dietrich et al. 2001). Another simple
example is the creeping flow of fluid over a bubble or a drop with a stagnant cap. It
is well known from experiments that a rising bubble or drop accumulates surfactant
at its downstream end (Beitel & Heidger 1971; Sadhal & Johnson 1983). In the limit
of small surface diffusivities, the surfactant is tightly packed into a cap and fluid
obeys the no-slip boundary condition over the cap. The remainder of the surface
is surfactant free and therefore mobile. One can also envisage the synthesis of a
slip–stick sphere by fusing an impermeable hemisphere and a porous hemisphere.
When placed in solution air would cover the surfaces of the pores thereby creating a
collection of no-shear (i.e. perfect slip) zones over the porous portion of the sphere.
Thus, one could ascribe to the porous hemisphere an effective slip length (e.g. Taylor
1971). (We are grateful to Dr D. T. Leighton for this suggestion.)

In this paper, we consider the motion of a force- and torque-free slip–stick sphere
immersed in a linear flow at low Reynolds numbers. Using linearity arguments we
demonstrate that a slip–stick sphere can translate and rotate relative to the linear flow.
In particular, for a two-dimensional straining flow it is shown that a slip–stick sphere
acquires an equilibrium orientation along either the extensional or compressional axis
of the flow, whereas in a simple shear flow the sphere undergoes a periodic rotational
motion, or Jeffrey orbit. Moreover, depending on the initial orientation of the director
with respect to the shear flow, the slip–stick sphere may either execute a periodic
translational orbit or undergo a net displacement in the flow direction. The rheology
of a dilute suspension of slip–stick spheres is found to be equally rich; even to first
order in the particle volume fraction the suspension is non-Newtonian, with non-zero
first and second normal stress differences.

The present work is similar in spirit to that of Nir & Acrivos (1973) who studied
the motion of a freely suspended aggregate, or doublet, consisting of two unequal
touching spheres in a linear flow. (Note, the no-slip condition is obeyed on the surface
of each sphere). The aggregate constitutes an axisymmetric fore-aft asymmetric body;
hence, just as for a slip–stick sphere, the doublet migrates in a simple shear flow
and undergoes periodic rotational motion. Moreover, a suspension of such aggregates
possesses a non-Newtonian rheology to first order in the doublet volume fraction.
On a related theme, Dorrepaal (1978) considered the dynamics of a spherical cap
in a simple shear flow. Once again, the spherical cap is a fore-aft asymmetric body
of revolution that translates in a shear flow while executing cyclical orientational
motion.

In § 2 we present governing equations for the slip–stick sphere in a linear flow.
Furthermore, using the linearity of Stokes equations and the fact that a single
vector di characterizes the slip–stick asymmetry we derive simple expressions for the
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translational and angular velocities of the particle as a function of the imposed flow
field. These expressions contain a priori unknown coefficients that are determined
by an explicit solution of the Stokes equations via Lamb’s solution in the limit
λ/a � 1. In § 3 we consider the dynamics of a slip–stick sphere in a straining flow and
simple shear. The rheological properties of dilute suspension of slip–stick spheres are
discussed in § 4. Finally, in § 5, we draw some conclusions.

2. Governing equations and consequences of linearity
Consider a hydrodynamically Janus slip–stick sphere of radius a freely suspended

in a linear flow. Under creeping flow conditions the velocity field in the fluid ui obeys
the Stokes equations

μ0

∂2ui

∂xj∂xj

− ∂p

∂xi

= 0, and
∂ui

∂xi

= 0, (2.1)

where μ0 is the viscosity of the suspending fluid, p is the pressure and xi is the
position vector measured from the centre of the particle. Far from the slip–stick
particle, the fluid velocity approaches the imposed linear flow

ui → εijkω
∞
j xk + E∞

ij xj , as r → ∞, (2.2)

where εijk is the third-order unit alternating tensor and r = (xjxj )
1/2. In the above,

E∞
ij and 2ω∞

i are the rate of strain and vorticity of the undisturbed flow, respectively.
Over the no-slip portion of the sphere S2 (see figure 1), the fluid velocity satisfies

ui = Ui + εijkωjxk, (2.3)

where Ui and ωi are the translational velocity and angular velocity of the particle,
respectively. Note that Ui and ωi are not specified a priori ; instead they will be
found from the requirement that the particle is force and torque free. On the
hydrodynamically slipping part of the surface, S1, the fluid velocity obeys the Navier
boundary condition

ui = Ui + εijkωjxk + 2β
(
δij − ninj

)
Ejkxk, (2.4)

where ni is the unit normal; β = λ/a is the dimensionless slip length and Eij is the
local rate of strain.

The complicated (mixed) nature of the slip–stick boundary condition renders
solution of the Stokes equations for the velocity and pressure fields a challenging
task. However, one can exploit the linearity of the Stokes equations and the fact that
the orientation of the particle is specified uniquely by the director, di , to derive simple
expressions for the translational and angular velocities of the particle in terms of di

and the ambient rate of strain E∞
ij . Following Bretherton (1962) and Nir & Acrivos

(1973), for a freely suspended sphere the difference between the angular velocity of
the particle and that of the ambient flow is given by

ωi − ω∞
i = βB(α, β)εijkdjdmE∞

km, (2.5)

where the scalar B is a function of the slip–stick dividing angle α and the non-
dimensional slip length β only. Clearly, if the surface is either uniformly no-slip
(α = 0 or β = 0) or uniformly slip (α = π), the particle is spherically symmetric and
thus the sphere simply rotates with the ambient angular velocity ω∞

i . For intermediate
values of α and non-zero β , however, B is non-zero and must be found from an explicit
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solution of the Stokes equations subject to the slip–stick boundary conditions and
the requirement that the particle is force and torque free. Similar linearity arguments
can be used to write the translational velocity as

Ui = aβ
[
f1(α, β)E∞

ij dj + f2(α, β)didjdkE
∞
jk

]
, (2.6)

where the functions f1 and f2 again vanish if α = 0, α = π or β = 0.
Even though the above (exact) expressions for the rotational and translational

velocities derived from linearity arguments appear simple, one can illustrate their
power in the following example. Consider the sphere placed in the simple shear flow
u3 = γ̇ x1 and oriented along the flow direction (di = δi3). In this case,

ω1 − ω∞
1 = 0, ω2 − ω∞

2 = −B(α, β)
γ̇

2
, ω3 − ω∞

3 = 0, (2.7)

so that deviation from the local rotational motion is along the vorticity axis only. On
the other hand, the translational velocity becomes

U1 = λf1(α, β)
γ̇

2
, U2 = 0, U3 = 0, (2.8)

which implies that translation relative to the local flow occurs only along the velocity
gradient axis.

Note that a fore–aft symmetric particle such as a prolate spheroid will not translate
when placed at the centre of a linear flow. This is because such a particle is physically
invariant to reflection about its equatorial plane of symmetry. The translational
velocity should thus be unaffected by the transformation di → −di , which is possible
only when f1 = f2 ≡ 0. The slip–stick particle, on the other hand, is Janus and
therefore not fore–aft symmetric; consequently, its translational velocity in a linear
flow is non-zero. In contrast, the expression for relative angular velocity (2.5) contains
an even combination of di , and is thus unaffected by the transformation di → −di .

While the above arguments provide direct expressions for the translational and
rotational velocities of the particle, one has to solve the Stokes equations to determine
the scalar coefficients B , f1 and f2. As mentioned above, for arbitrary β this a difficult
task; therefore, to make progress we invoke the limit β � 1 in which the slip length
is much smaller than the particle radius. To proceed, the velocity and pressure fields
are written as regular perturbation expansions in β , viz

ui = u
(0)
i + βu

(1)
i + O(β2), p = p(0) + βp(1) + O(β2), (2.9)

where the zeroth-order fields u
(0)
i and p(0) correspond to a no-slip particle translating

with velocity Ui and rotating with angular velocity ωi − ω∞
i relative to the linear

flow. The first-order velocity u
(1)
i and pressure p(1) satisfy the Stokes equations and

vanish at infinity. Most importantly, the first-order slip flow u
(1)
i at r = a is forced by

the normal component of the zeroth-order rate of strain E(0)
ij nj . The first-order fields

are computed using Lamb’s solution for Stokes flow; full details of the calculations
are given in appendix A. In fact, using the approach described in appendix A, one
can calculate the complete grand resistance matrix (Kim & Karrila 2005) for the
slip–stick particle, and this is presented in appendix B. The translational velocity Ui

and relative angular velocity ωi − ω∞
i are determined by asserting that the total force

Fi = F
(0)
i + βF

(1)
i and total torque Ti = T

(0)
i + βT

(1)
i on the particle are equal to zero.

The scalar constants calculated in appendix A to leading order in β are summarized
in table 1. With this information, we can compute the dynamics of the centre of mass
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Scalar Functional form

B −(15/16) sin2 α cos α

f1 −(5/8) sin2 α
(
1 + cos2 α

)
f2 (5/16) sin2 α

(
−5 sin2 α + 4

)
g1 −(15/8)(1 − cos α)2

(
cos3 α + 2 cos2 α + 3 cos α + 4

)
g2 (75/16) cos α sin2 α

(
7 cos2 α − 3

)
g3 −(75/8) cos3 α sin2 α

Table 1. The leading-order term in β for the various scalar constants appearing in the
expressions for rotational velocity (2.5), translational velocity (2.6) and stress tensor (4.3).

and the orientation of a slip–stick sphere when placed in a general linear flow, and
this is discussed in the following section.

3. Particle motion in a linear flow
In the previous section, we observed that the imposition of the force- and torque-

free restrictions on the slip–stick sphere endows it with translational and rotational
velocities that are, in most cases, non-zero. In this section, we explore the rich
dynamics exhibited by a hydrodynamically Janus particle in a general linear flow,
and in particular, a simple shear flow.

Consider a slip–stick sphere placed in the general linear flow u∞
i = E∞

ij xj +
(1/2)εijkω

∞
j xk . The governing equations for the motions of the director and the

centre of mass xP
i of the slip–stick sphere are as follows:

ddi

dt
= εijkωjdk = εijkω

∞
j dk + βB

(
E∞

ij dj − diE
∞
jkdjdk

)
,

dxP
i

dt
=

(
Eijxj +

1

2
εijkω

∞
j xk

)
xP

j + aβ
(
f1E

∞
ij dj + f2didjdkE

∞
jk

)
.

⎫⎪⎪⎬
⎪⎪⎭ (3.1)

Note that the evolution equation of the director is identical to that of an axisymmetric
particle (e.g. see Kim & Karrila 2005). Therefore, the director is expected to describe
Jeffery orbits in a simple shear flow analogous to a spheroid. The Bretherton constant
for the slip–stick sphere is βB . As noted by Dorrepaal (1978), the sign of the
Bretherton constant is indicative of the geometry of an object; for example, prolate
(oblate) spheroids have positive (negative) values of the Bretherton constant. In
the case of a spherical cap, the Bretherton constant is negative, indicating the oblate
character of the cap’s shape (Dorrepaal 1978). In contrast, the asymmetric doublet of
Nir & Acrivos (1973) is a prolate body with positive Bretherton constant. Interestingly,
for the slip–stick sphere, the sign of the Bretheron constant βB depends on the value
of the slipping angle α. For 0 � α < π/2, βB < 0, so that the slip–stick sphere is
oblate, whereas for π/2 < α � π, βB > 0, hence the slip–stick sphere is prolate.

The hydrodynamic aspect ratio R of the equivalent spheroid is

R =

√
1 + βB

1 − βB
≈

√
1 − (15/16)β sin2 α cos α

1 + (15/16)β sin2 α cos α
≈ 1 − 15

16
β sin2 α cosα + O(β2). (3.2)

Notably, when the slipping angle α is equal to 0, π or π/2, the aspect ratio R is equal
to unity. The dynamics of the director for these cases will be identical to that of an
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isotropic sphere – a rotation with the ambient angular velocity ω∞
i . These behaviours

will be explained physically in subsequent paragraphs of this section.
Let us study the dynamics of the slip–stick sphere for the simple shear flow u∞

3 = γ̇ x1.
For this flow, it is convenient to write the director in spherical coordinates as

d1 = sin θ sinφ,

d2 = cos θ,

d3 = sin θ cos φ,

⎫⎪⎬
⎪⎭ (3.3)

where θ and φ are polar and equatorial angles, respectively. The governing equations
simplify to

dθ

dt
=

B

4
γ̇ sin 2θ sin 2φ,

dφ

dt
= − γ̇

2
+ β

B

2
γ̇ cos 2φ,

dxP
i

dt
= γ̇ xP

1 δi3 + aβγ̇

[
f1

2
(δi1d3 + δi3d1) + f2did1d3

]
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.4)

To better understand the individual contributions of the rotational and straining
components of the simple shear flow to the particle dynamics, we will split our
discussion into three cases: (a) the sphere placed in an ambient rotating flow, (b)
the sphere placed in a pure straining flow and (c) the sphere placed in the complete
simple shear flow.

3.1. Slip–stick sphere in the ambient rotating flow u∞
i =(γ̇ /2) (δi3x1 − δi1x3)

In this rather trivial case, the governing equations for the translational velocity and
the director reduce to

dθ

dt
= 0,

dφ

dt
= − γ̇

2
,

dxP
i

dt
=

1

2
εijkω

∞
j xP

k =
γ̇

2

(
δi3x

P
1 − δi1x

P
3

)
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.5)

The slip–stick sphere thus executes a rotational motion with an angular velocity
identical to that of the ambient field, and simply translates with the local ambient
velocity evaluated at the centre of the sphere.

3.2. Slip–stick sphere in the pure straining flow u∞
i =(1/2)γ̇ (δi3x1 + δi1x3)

For pure straining flow, governing equations (3.4) become

dθ

dt
= β

B

4
γ̇ sin 2θ sin 2φ, (3.6a)

dφ

dt
= β

B

2
γ̇ cos 2φ, (3.6b)

dxP
i

dt
=

γ̇

2

(
δi1x

P
3 + δi3x

P
1

)
+ aβγ̇

[
f1

2
(δi1d3 + δi3d1) + f2did1d3

]
. (3.6c)

Let us first examine the rotational behaviour of the sphere. Clearly, the dynamics
of the equatorial angle φ is independent of the polar angle θ and thus
may be examined separately. There are four steady states of the equatorial
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Figure 2. Why the quarter-slipping and three-quarter-slipping spheres rotate in opposite
directions in pure straining flow. The shaded areas of the spheres in (a) and (b) represent their
slipping portions. (c) The labelling convention employed in the text for the various octants
Ia through IVb of the flow. The curved arrows with triangular heads near the sphere surface
convey qualitatively the local torque acting on the surface due to the imposed flow. The arrows
with filled triangular heads (in the no-slip regions) indicate a stronger torque than those with
hollow triangular heads (in the slipping regions). ‘Summing up the curved arrows’ around the
sphere yields the net torque. One can see that the total torque acting on the quarter sphere in
(a) is negative which will result in a clockwise motion of the sphere. On the other hand, the
three-quarter sphere in (b) will experience a positive torque of equal magnitude as the sphere
in (a), and, in response, will rotate in the anticlockwise direction.

angle φ = (π/4, 5π/4), (3π/4, 7π/4). The brackets group together physically identical
orientations of the sphere. Out of these, one pair represents a stable fixed point,
while the other pair is unstable. The stability depends on the sign of the Bretherton
constant B , which, in turn, depends on the degree of slipping of the sphere α. Before
we examine the stability mathematically, it is instructive to consider the stability
behaviour through physical arguments.

Let us first attempt to predict the direction of rotation of the sphere as a function
of its orientation for the case of θ = π/2 when the director is oriented in the plane
of shear. It will be shown later that this is a stable steady state for the polar angle.
Thus, if the sphere starts out with its director in the plane of shear, it will remain
in the plane of shear. Consider a slip–stick sphere with a slipping angle α = π/4
oriented along the x3 axis (see figure 2a). We divide the flow field into eight octants
(Ia, Ib, IIa, IIb, . . . , IVb) as shown in figure 2(c), for purposes of this discussion.
In figure 2(a), with α = π/4 and φ =0, the negative torque on the sphere in octants
Ib and IIa (no-slip) cancels the positive torque in octants IIb and IIIa (no-slip). The
residual torque on the sphere arises from a balance between the negative torque in
the no-slip octants IIIb and IVa, and weak positive torque in the slip octants IVb and
Ia, which results in a net negative torque on the sphere. Hence, as the sphere is torque
free, it rotates in a clockwise direction. Thus, for α = π/4 and φ = 0, ω2 should be
negative.
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Figure 3. Why the half-slipping sphere does not rotate in pure straining flow. The legend is
the same as in figure 2. Summing up the arrows over each sphere, one can see that the solid
arrows in the no-slip regions always cancel each other out, and the same is true for the hollow
arrows in the slipping regions. Therefore, the net torque on the half-sphere is zero regardless of
the orientation. The straight arrow with the dark triangular head in (a)–(e) shows the direction
of the net force acting on the particle due to the flow. (a) φ = 0; because of the symmetry of
the half-sphere, there is a net force acting in both slip and no-slip portions only along the x1

axis. However, the magnitude of the downward force over the no-slip region is greater than
the upward force in the slip region, resulting in a net downward force. (b) φ = π/4; there is an
overall pulling force acting along the extensional axis in both the slipping and non-slipping
regions. But since the pull in the no-slip region is stronger, the sphere is dragged along the
extensional axis towards its no-slip face along −di . Similar explanations may be offered for
(c)–(e).

Now consider a three-quarter-slipping sphere (α = 3π/4) with φ = 0 as shown in
figure 2(b). In this case, the torques in octants IIa & Ib and Ia & IVb cancel out
each other. A net positive torque acts on the particle due to the stronger positive
torque on the no-slip octants IIb and IIIa than the weaker negative torque on the
slip octants IIIb and IVa. Thus, for α = 3π/4 with φ = 0, ω2 should be positive. This
reversal of the direction of the angular velocity with the transformation α → π − α

may be demonstrated with such physical arguments for arbitrary α and orientation
φ. This is supported by the factor cos α in the expression for B (see table 1). Note
that when α = π/2, the angular velocity is identically zero. This may be explained



244 A. Ramachandran and A. S. Khair

with the diagrams in figure 3. From these figures, it is seen that for any orientation
of the half-slipping sphere, there are always two no-slip and two slip octants with
positive torque, and two no-slip octants and two slip octants with negative torque.
The net torques in the slip and no-slip halves of the sphere are exactly zero, resulting
in a torque-free particle.

Consider again the quarter-slipping sphere as shown in figure 4 in various
orientations. figure 4(b) shows the slip–stick sphere oriented in the steady-state
configuration of φ = 7π/4. In this position, the torques in the no-slip octants Ia
through IIIB cancel each other exactly, so also do the torques in the slip octants IVa
and IVb. Thus, the net torque on the sphere in this position is identically zero. In fact,
this argument for zero angular velocity of the sphere is valid irrespective of the value
of α. Similar arguments may be used to demonstrate that φ = π/4, 3π/4 and 7π/4
are also steady-state orientations. To determine the stability of these orientations, we
study the effect of imposing a perturbation in φ from these steady states. The steady
state is stable if the perturbation decays in time, and is unstable if it does not. For
purposes of simplicity, let us take this perturbation to be ±π/4. Using the arguments
presented in the previous paragraph, one can see that starting from either of the
positions 0, π/2, π or 3π/2 (left panel in figure 4), the sphere will eventually orient
itself along the compressional axis (φ = 3π/4 or φ = 7π/4) (right panel in figure 4).
Thus, for a quarter-slipping sphere, the orientations along the compressional axis are
stable, while orientations along the extensional axis (φ = π/4, 5π/4) are unstable. This
result applies for all angles α < π/2. In a similar fashion, it may be demonstrated
(see figure 5) that a three-quarter-slipping sphere always tends to orient itself along
the extensional axis of the straining flow.

The above predictions may be corroborated by performing a linear stability analysis
of governing equations (3.6a) and (3.6b). It may be shown that one eigenvalue for
this equation is e1 = − βB sin 2φ∗, where φ∗ is a steady-state solution to (3.6b). Thus,
for the combinations φ∗ = π/4 or 5π/4 and B < 0 (0 < α < π/2), and φ∗ = 3π/4
or 7π/4 and B > 0 (π/2 < α < π), this eigenvalue is negative, implying that the
steady states are stable. This is exactly what is predicted by the physical arguments
presented above. The second eigenvalue e2 is simply −e1 cos(2θ∗)/2. The steady-state
values for θ from (3.6a) are θ∗ = 0, π/2, π. It may be seen that provided e1 is negative,
e2 is negative only for θ∗ = π/2. Therefore, the sphere always ultimately orients itself
into the plane of the pure straining flow. It is important to note that the dynamics
of the director is only a function of θ and φ and is, therefore, independent of the
position of the particle in the flow. Thus, given an initial orientation, the evolution of
the director will be the same irrespective of its initial position.

Now consider the translational motion of the sphere as described by (3.6c). Let us
begin with the sphere placed at the origin of the flow. In this position, the translational
velocity is O(aβγ̇ ) and depends strongly on its orientation. If the director is initially
along the x3 axis, then for any value of α, the particle is displaced in the negative
x1 direction. This may be understood by examining, for instance, figure 3(a) showing
the quarter-slipping sphere. The forces acting on the sphere in octants Ib & IIa and
IIIb & IVa balance each other exactly. The forces that act in the no-slip octants IIb
and IIIa and the slip octants IVb and Ia when integrated act only in the negative
and positive x1 directions, respectively. Since the no-slip force is greater than the slip
force, the net force acting on the particle is in the negative x1 direction. The sphere,
therefore, moves along the negative x1 axis to balance this force. These arguments
may be applied for arbitrary α to show that the sphere will move only in the negative
x1 direction when it is placed at the flow origin with di = δi3. Similarly, when di = −δi3,
the sphere is displaced in the positive x1 direction.
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Figure 4. The stable orientational configurations of a quarter sphere in a pure straining
flow. For the meanings of the arrows, refer to the caption of figure 2. The left panel
shows different initial orientations of the sphere, while the right panel displays the final
orientations that these initial configurations evolve into. One can see by summing up the
arrows that the net torques for all the orientations in the right panel are zero. In (a) with
φ = 0, summing up the arrows in the initial configuration indicates that the sphere should
experience a negative torque, and consequently it settles into the steady state along the
compressional axis with φ = 7π/4 as shown in the right panel (b). On the other hand, when
φ is initially equal to 3π/2 (c, d), the sphere experiences a positive torque and again returns
to the steady configuration shown in the right panel. Similarly, when starting with φ = π and
φ = π/2, the sphere again rotates to settle along the compressional axis, but this time with
φ = 3π/4.
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Figure 5. The stable orientational configurations of a three-quarter sphere in a pure straining
flow. For the meanings of the arrows, refer to the caption of figure 2. Using arguments identical
to those put forth in the caption for figure 4, one can see that the sphere always rotates to
arrange itself along the orientationally closer extensional axis (φ = π/4 or φ = 5π/4).

Consider the case when the sphere is oriented along the extensional axis of the
flow. There is a net force acting on the sphere along the extensional axis towards
the no-slip side (along −di), irrespective of α. On the other hand, when the sphere
is oriented with its director along the compressional axis, a net force acts along
the compressional axis towards the slip side (along di). These trends may be easily
verified from (3.6c) and the expressions for the functions f1 and f2 in table 1. Once
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Figure 6. Plot of the evolution of the ratio of the in-plane coordinates x3/x1 (for φ0 = 0, π)
or x1/x3 (for φ0 = π/2, −π/2) for β =0.1. The results are identical for α = π/4 and α = 3π/4.
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Figure 7. Plot of the evolution of the orientation of the director φ for β = 0.1 and α = π/4.

the sphere is displaced from the centre of the straining flow, its translational motion
is dominated by the component arising from the ambient straining flow [the first
term in (3.6c)] which is independent of the orientation of the sphere. Said differently,
the centre-of-mass motion becomes independent of the director dynamics once the
sphere is sufficiently far away from the centre of the flow.

In figures 6 and 7, we have shown the dynamics of a quarter-slipping sphere for
different initial orientations. From the figures, it may be seen that irrespective of the
initial orientation φ0, the particle finally aligns itself with the compressional axis of
the flow in the plane of shear, while the centre of mass moves close to extensional
axis once the particle leaves the flow centre. For a three-quarter-slipping sphere, the
motion of the centre of mass eventually is, again, along the extensional axis away
from the flow centre, but this time it orients with the extensional axis (see figure 8).

The particle also has four steady-state positions corresponding to specific initial
orientations, two each on the compressional and extensional axes, which are
symmetrically placed around the flow origin at a distance of O(βa). For example,
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Figure 8. Plot of the evolution of the orientation of the director φ for β = 0.1 and α = 3π/4.

if the particle is on the compressional axis (quadrant II) with φ0 = 3π/4, the steady
position is achieved by a balance between the straining flow sweeping the particle
towards the origin and the outward translational motion due to the response of the
particle to the external flow. These steady-state positions are, however, unstable.

3.3. Slip–stick sphere in the simple shear flow u∞
3 = γ̇ x1

To understand the motion of the hydrodynamically Janus sphere in the simple shear
flow u∞

3 = γ̇ x1, we simply combine the results of the purely rotational and straining
cases. The governing equations have already been presented in (3.4), and although it is
possible to obtain an analytical solution to these equations (for the actual formulas, see
Nir & Acrivos 1973), we employ a numerical method here. The numerically evaluated
results of the centre of mass and particle trajectories are shown in figures 9–12. The
rotational motion is the sum of rigid body motion about the x2 axis and a rotation
due to the inability of the sphere to deform in the straining flow, which results in
Jeffrey orbits as alluded to earlier in this section. However, since the contribution of
the straining flow to the rotation is O(β), the orbits are only weakly perturbed from
perfect circles (see figure 12b).

The motion of the centre of mass of the sphere is much more interesting. The
particle may either execute a periodic motion, or experience a constant displacement
along the x3 (flow) axis at the end of every period of rotation. The type of trajectory
depends on whether the director is parallel to the flow as the sphere passes through the
zero velocity plane. If this is the case (i.e. φ = 0 when x1 = x3 = 0), then the trajectory
is a closed orbit (see figures 9 and 12) whose size scales as aβ . If this condition is not
satisfied, then the sphere experiences a net drift along the x3 axis after each period
of rotation (see figures 10 and 11). This may also be demonstrated by examining the
analytical solutions to the governing equations, but in the interest of brevity, we shall
not pursue this here.

The trajectories in figures 10 and 11 may be understood with the aid of our
discussion of the translational motion of the Janus sphere in pure straining flow.
For example, consider the drift of the half-slipping sphere initially placed at the
flow origin with orientation φ0 = π/2, as shown in figure 11(c). From figure 3(c), the
sphere experiences an instantaneous drift along the −x3 direction. At the same time,
it rotates with the ambient flow in the clockwise direction, resulting in an equatorial
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Figure 9. Closed-orbit trajectories (solid lines) with sphere orientation (arrows) for β = 0.05
and different α. The initial position for all these simulations is the origin. The sphere starts
out and remains in the plane of shear (θ = π/2), and the initial orientation φ0 is zero. The
parameter α for (a), (b) and (c) are π/8, π/4 and π/2, respectively.
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Figure 10. Non-periodic trajectories (solid lines) with sphere orientation (arrows) for different
φ0 with α = π/4 and β = 0.05. The integration with time was carried out up to γ̇ t = 25. The
initial position for all these simulations is the origin. The sphere starts out and remains in the
plane of shear (θ = π/2). The initial orientations φ0 for (a), (b) and (c) are π/8, π/4 and π/2,
respectively.

angle φ < π/2. For this orientation, the translational velocity of the sphere acquires
a component in the −x1 direction (e.g. see figure 3b) and the sphere drifts below
the zero velocity streamline. Subsequently, it is swept by the shear flow further in
the −x3 direction (which also explains the fact that the direction of the net drift in
figures 10 and 11 is always along the negative x3 direction). But the x1 component
of the sphere velocity is still determined only by its orientation in the local pure
straining flow. Therefore, as the sphere rotation crosses φ = − π/2 (the minimum
in the trajectory in figure 11c), its velocity in the x1 direction switches from being
negative to positive. Eventually, it reaches the zero velocity streamline and the cycle
starts again ad infinitum.

The results here are qualitatively similar to the trajectories of an asymmetric
doublet (Nir & Acrivos 1973) and spherical cap (Dorrepaal 1978) in a simple shear
flow. In particular, analogous to the slip–stick sphere, both the asymmetric doublet
and spherical cap execute periodic trajectories only if they are oriented along the flow
when their centre of rotation is in the zero velocity plane. Otherwise, the doublet and
cap experience a net displacement in the flow direction. Note that while the slip–stick
sphere, asymmetric doublet and spherical cap may migrate along the flow direction,
these do not experience a net translation transverse to the flow. More generally,
in fact, as shown by Bretherton (1962), any body of revolution that undergoes a
periodic rotational motion in a simple shear flow will not execute a net migration
across streamlines.
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Figure 11. Non-periodic trajectories (solid lines) with sphere orientation (arrows) for different
φ0 with α = π/2 and β =0.05. The integration with time was carried out up to γ̇ t =25. The
initial position for all these simulations is the origin. The sphere starts out and remains in the
plane of shear (θ = π/2). The initial orientations φ0 for (a), (b) and (c) are π/8, π/4 and π/2,
respectively.

4. Rheological properties
In this section, we consider the rheology of a dilute suspension of Janus slip–stick

spheres. In a linear flow, a slip–stick particle can translate and rotate such that there
is no net force or torque on it; however, it cannot deform with the local straining
motion of the fluid. This leads to an increase in the average, or macroscopic, stress
of a suspension of such particles. As shown by Batchelor (1970), for a homogeneous
suspension of N force- and torque-free particles, the average stress 〈Σij 〉 is given by

〈Σij 〉 = −〈p〉f δij + 2μ0〈Eij 〉 + n〈Sij 〉, (4.1)

where 〈. . . 〉 denotes an average over the entire suspension (particles plus suspending
fluid) for a given instantaneous configuration, 〈. . . 〉f denotes an average over the
fluid phase only, n= N/V is the number density of particles in a volume V , and the
average particle stresslet 〈Sij 〉 is defined as a number average, 〈Sij 〉 =(1/N)ΣN

p=1S
p
ij .

The contribution to the average stresslet from a single particle is

S
p
ij =

1

2

∮
[(xiσjknk + xjσiknk) − 2μ0(uinj + ujni)]dS; (4.2)

the integral is over the surface of the particle, S = S1 ∪ S2 as defined in figure 1. In
the above, note that while the slip–stick particle is rigid, the tangential slip velocity
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Figure 12. Three-dimensional periodic trajectories (solid lines) of the centre of mass (left
panel) of the sphere and its director (right panel) for different initial values of θ with β = 0.05,
α = π/4 and an initial value of 0 for φ. The initial polar angle θ0 of the director is π/8 for (a)
and (b), π/4 for (c) and (d ) and 3π/8 for (e) and (f ). In the right panel, the dot represents the
initial orientation of the sphere. The arrows indicate the direction of motion and rotation in
the left and right panels, respectively.

on the slipping portion Sp,1 does not vanish; hence, there is a contribution to the
off-diagonal components of the particle stress from the velocity terms in the integral.

For a sufficiently dilute suspension, interactions between slip–stick spheres are
negligible, and particle stress (4.2) can be computed from the solution of the Stokes
equations for a single slip–stick sphere in a linear flow as described in appendix A.
Moreover, if the initial orientations of each of the N particles are the same, they will
contribute an equal amount to the average stresslet; thus 〈Sij 〉 = S

p
ij .

From the linearity of the Stokes equations and because the orientation of a slip–
stick particle is specified uniquely by di , the average stresslet can also be written in
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the general form (Ericksen 1959)

〈Sij 〉 =
20π

3
μ0a

3E∞
ij +

4π

3
μ0a

3β[g0δijdkdlE
∞
kl + g1E

∞
ij + g2didjdkdlE

∞
kl

+ g3(didkE
∞
jk + djdkE

∞
ik )], (4.3)

where the first term on the right-hand side of (4.3) is the stresslet for a no-slip
sphere in a linear flow. In the small-slip-length limit (β � 1), the gi scalars are
dimensionless functions of the slip–stick dividing angle α only. A detailed discussion
of the computations used to determine the gi functions can be found in appendix A,
and their functional forms are presented in table 1.

In appendix D, it is shown that in the dilute (single particle) limit, the trace of the
stresslet must equal zero. Formally, from the above equation, the trace is given by

〈Sii〉 =
4π

3
μ0a

3β(3g0 + g2 + 2g3)dkdlE
∞
kl , (4.4)

which implies that 3g0 + g2 + 2g3 = 0. Therefore, the stresslet may be re-written in the
manifestly traceless form

〈Sij 〉 =
20π

3
μ0a

3E∞
ij +

4π

3
μ0a

3β

[
g1E

∞
ij + g2(didj − 1

3
δij )dkdlE

∞
kl

+ g3(didkE
∞
jk + djdkE

∞
ik − 2

3
δijdkdlE

∞
kl )

]
. (4.5)

It is instructive to consider the rheological response to the simple shear flow
u3 = γ̇ x1. In this case, the i3, i1 and i2 unit vectors represent the flow, gradient and
vorticity directions, respectively, and the first and second normal stress differences of
the suspension are defined as N1 = 〈Σ33〉 − 〈Σ11〉 and N2 = 〈Σ11〉 − 〈Σ22〉, respectively.
A straightforward calculation shows that

N1 = μ0cγ̇ βd1d3(d
2
3 − d2

1 )g2, (4.6)

N2 = μ0cγ̇ βd1d3((d
2
1 − d2

2 )g2 + g3), (4.7)

where c = 4πna3/3 is the particle volume fraction. Substituting the components of the
director di in spherical coordinates from (3.3) into the above equation, we find

N1

μ0cγ̇ β
=

1

4
sin4 θ sin 4φg2, (4.8)

N2

μ0cγ̇ β
=

1

2
sin2 θ sin 2φ((sin2 θ sin2 φ − cos2 θ)g2 + g3). (4.9)

Figure 13 plots g2 and g3 as a function of the slipping angle α. Of course, for
an entirely no-slip or slipping sphere (α = 0 or α = π, respectively), g2 and g3 equal
zero. In these trivial cases, the normal stress differences vanish as the particle surface
is spherically symmetric. For a half-slipping sphere (α = π/2), we see, again, that
g2 = g3 = 0, which implies both normal stress differences are zero regardless of the
orientation of the sphere. To offer a simple explanation for this somewhat surprising
result, let us consider the case where the director lies in the plane of shear, θ = π/2.
In figure 14 we sketch the compressive and tensile (normal) stresses acting on a
half-slipping sphere for various orientations of the director in the shear plane. For
example, in figure 14(b) (φ = π/4) the compressive stress acting over the no-slip surface
in octants IIb and IVa is balanced by the tensile stress on the no-slip surface in the
extensional quadrant III of the flow. Similarly, the compressive stress acting on the
slipping surfaces in octants IIa and IVb is matched by the tensile stress in extensional
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Figure 13. Plot of the stress functions g2 and g3 versus the slipping angle α.

quadrant I. Consequently, there is no net compressive or tensile stress on the particle
and thus the normal stress differences N1 and N2 equal zero. Similar arguments may
be applied to the four remaining subfigures in figure 14. The key point is that for a
half-slipping sphere, there always exist two octants each of compressive no-slip stress,
compressive slip stress, tensile no-slip stress and tensile slip stress.

We now consider the normal stress differences N1 and N2 for other slipping angles.
Figure 15 plots the scaled second normal stress difference, N2/μ0cγ̇ β , as a function of
the director orientation φ in the shear plane (θ = π/2) for a quarter-slipping and three-
quarter-slipping spheres, respectively. In both cases, N2 vanishes when the director is
parallel to the velocity or velocity-gradient axes. For a quarter-slipping sphere, as φ

increases from zero, N2 becomes increasingly negative, until φ ≈ π/4 at which point it
reaches a minimum value. Beyond this N2 increases (passing through zero at φ = π/2)
until a positive maximum is reached at φ ≈ 3π/4, after which N2 decreases and
becomes zero at φ = π. Again, one may offer a simple explanation for this behaviour.
In figure 16, we sketch the normal stresses acting on a quarter-slipping sphere for six
orientations: φ =0, π/4, π/2, π, 3π/2 and π. In each subfigure, there are six octants
of no-slip stress and two octants of slip stress (lesser in magnitude). Following the
arguments used for a half-slipping sphere, if the director is parallel to the velocity or
velocity-gradient axis – figures 16(a), 16(c) and 16(e) – the compressive and tensile
stresses balance such that there is zero net normal stress, and therefore no normal
stress differences. However, if the director is aligned with the extensional axis of the
flow φ = π/4 (figure 16b) there is a net compressive stress acting on the sphere along
the compressional axis of the flow. Since normal stresses are negative in compression
by convention, this implies that 〈Σ33〉 = 〈Σ11〉 < 0 and thus N1 = 〈Σ33〉 − 〈Σ11〉 = 0
and N2 = 〈Σ11〉 − 〈Σ22〉 < 0. Similarly, for φ = 3π/4 (figure 16d ), a net tensile stress
acts along the extensional axis of the flow, giving 〈Σ33〉 = 〈Σ11〉 > 0, and thus
N1 = 〈Σ33〉 − 〈Σ11〉 =0 and N2 = 〈Σ11〉 − 〈Σ22〉 > 0.

For a three-quarter-slipping sphere N2 is of opposite sign for a given value of φ as
compared to that for a quarter-slipping sphere. This may be explained by reference to
figure 17 in which are sketched the stresses acting on a three-quarter-slipping sphere
for φ = π/4 (and also a quarter-slipping sphere for comparison). For α = 3π/4 there
are six octants of slip stress and two octants of no-slip stress. Summing the stresses in
the eight octants, we see that there is a net tension on the sphere along the extensional
axis of the flow, implying that N1 = 〈Σ33〉 − 〈Σ11〉 =0 and N2 = 〈Σ11〉 − 〈Σ22〉 > 0.
Thus, for φ = π/4, N2 is of opposite sign for three-quarter and one-quarter-slipping
spheres.
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Figure 14. Why the normal stress differences N1 and N2 are zero for a half-slipping (α = π/2)
sphere. For each subfigure, the arrows represent qualitatively the normal stresses acting on the
particle in the eight octants of the flow. An arrow pointing towards the particle indicates a
compressive stress; conversely, an outward pointing arrow represents a tensile stress. Arrows
with a filled arrowhead (acting on the no-slip portions of the sphere) signify a greater in
magnitude stress than arrows with a hollow arrowhead (which act over the slipping portions).
For each subfigure we see that there are always two octants of compressive stress acting on
the no-slip portion of the sphere; however, these are balanced by the tensile stress exerted
over two no-slip octants. A similar balance is realized over the slipping portions of the sphere.
Thus, in each configuration there is no net normal stress on the particle and consequently the
normal stress differences must vanish.

In the above discussion, we concluded that for a quarter or three-quarter-slipping
sphere, the first normal stress difference N1 is zero when the director is along the
velocity or velocity-gradient axis. Furthermore, N1 is zero if the director is aligned
with the compressional or extensional axis of the shear flow, since, in these cases, the
net compression or tension on the particle acts equally in the velocity and velocity-
gradient directions. For intermediate values of φ, however, there is an imbalance in
the normal stresses acting in the x1 and x3 directions that will lead to a non-zero
N1. This is clearly seen in figure 18 in which the scaled first normal stress difference,
N1/μ0cγ̇ β , is plotted as a function of φ for α = π/4 and α = 3π/4. By analogy with
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Figure 15. Plot of scaled second normal stress difference N2/μ0cγ̇ β in simple shear flow.
The solid line is for a quarter-slipping sphere (α = π/4); and the broken line is for a
three-quarter-slipping sphere (α = 3π/4).
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Figure 16. Normal stress differences for a quarter-slipping sphere. The legend is the same as
in figure 14. When the director is aligned with the velocity or velocity-gradient axes – (a), (c)
and (e) – N1 and N2 are both zero. However, if the director is aligned with the compressional
or extensional axis of the flow – (b) and (d ) – N2 is non-zero whereas N1 remains zero.
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Figure 17. Normal stress differences for a quarter-slipping and three-quarter-slipping
slip–stick sphere for the equatorial angle φ = π/4. The legend is the same as in figure 14.
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Figure 18. Plot of scaled first normal stress difference N1/μ0cγ̇ β in simple shear flow.
The solid line is for a quarter-slipping sphere (α = π/4); and the broken line is for a
three-quarter-slipping sphere (α = 3π/4).
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Figure 19. Plot of the slipping contribution to the relative viscosity,
�μr = (μr − (1 + 5c/2))/cβ , as a function of φ for various values of α.
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N2, it is observed that N1 for a quarter and three-quarter-slipping spheres has opposite
signs as a function of φ.

Lastly, the dimensionless relative shear viscosity μr of the suspension is defined as
μr = 〈ΣP

13〉/μ0γ̇ . Using (4.1) and (4.5) μr is given in terms of the gi functions as

μr = 1 +
5

2
c + cβ

(
1

2
g1 + (d1d3)

2g2 +
1

2
(d2

1 + d2
3 )

)
(4.10)

= 1 +
5

2
c + cβ

(
1

2
g1 + sin2 θ cos2 φ sin2 φg2 +

1

2
sin2 θg3

)
. (4.11)

In the above expression, the 1 + (5/2)c contribution is, of course, nothing but the
relative viscosity for a dilute suspension of no-slip spheres – a result first derived by
Einstein (1906). The remaining term, proportional to cβ , represents the effect of slip on
the relative viscosity. As the slipping angle increases, the shear stress on the sphere’s
surface decreases; hence, one expects that μr decreases with increasing α. Indeed,
this behaviour is observed in figure 19 in which we plot the slip contribution to the
relative viscosity, �μr = (μr − (1+5c/2))/cβ , as a function of the director orientation
φ (with θ = π/2) for various α. The slipping contribution decreases monotonically
from �μr = 0 at α = 0. For an entirely slipping sphere, we find �μr = 15/2, which is in
agreement with Happel & Brenner (1965). Interestingly, for a half-slipping sphere, the
relative viscosity does not vary with director orientation – the slipping contribution
attains a constant value of �μr = − 15/4.

In the above discussion, we note that the orientational dynamics of the director di is
determined solely by the imposed flow. For a simple shear flow the director executes a
Jeffrey orbit; consequently, the rheology will be periodic in time. A complete analysis
of the rheological properties of a dilute suspension of slip–stick spheres would require,
however, the inclusion of effects that damp out the cyclical motion of the director
and lead to a statistically steady orientational distribution. For submicron colloidal
particles, the most likely damping effect is due to rotational Brownian motion. In this
case, the motion of the director is no longer deterministic; instead, the probability
distribution function for finding the director in a particular orientation satisfies an
orientational advection–diffusion equation (see, e.g. Hinch & Leal 1972; Kim &
Karrila 2005). This equation reflects a balance between the imposed flow acting to
orient the particle and the randomizing influence of Brownian rotation. The ratio of
these effects is given by a rotary Péclet number, Pe = γ̇ /DR (here DR is the rotational
diffusivity). Moreover, the various contributions to the particle stress in (4.5) must
now be weighted by the probability of finding the director in a particular orientation.
The rheology of a Brownian suspension of slip–stick spheres will thus share many
similarities with that of a suspension of spheroids (Hinch & Leal 1972); however, a
detailed analysis is beyond the scope of this work.

5. Conclusions
Almost 20 years ago, Casagrande et al. (1989) fabricated the first amphiphilic

micron-sized spheres and coined the term ‘Janus bead’ to describe their dual-
faced nature. Two years later, on the occasion of his Nobel lecture, De Gennes
(1992) referred to these spheres as ‘Janus grains’ and commented on their potential
application as surfactants with precisely tailored characteristics. These founding works
have triggered much interest in fabricating micro- and nanoscale Janus particles with
anisotropic chemical, electrical and magnetic properties (Perro et al. 2005; Walther
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& Muller 2008). More recently, efforts have been focused toward understanding the
dynamics of Janus particles with a view to application in microfluidic devices (Howse
et al. 2007; Gangwal et al. 2008). In this paper, we have investigated the dynamics
of a hydrodynamically Janus sphere in a linear flow at zero Reynolds number. The
motion of this ‘slip–stick’ sphere in a linear flow is dramatically different from a surface
isotropic sphere. For example, in a simple shear flow the particle executes either a
periodic translational orbit or undergoes a net displacement in the flow direction,
depending on its initial orientation. Moreover, the director of the particle describes
a Jeffrey orbit in orientation space. In a pure straining flow, on the other hand, the
slip–stick sphere acquires a preferred orientation along either the compressional or
extensional axis of the flow, depending on the ratio of slip to no-slip surface areas.
Furthermore, the rheology of a dilute suspension of slip–stick spheres is, in general,
non-Newtonian with non-zero first and second normal stress differences. For a truly
Janus, or half-half (α = π/2), slip–stick sphere the rotational dynamics are quite trivial
– the particle merely rotates with the angular velocity of the ambient field. Also, the
rheology is Newtonian with a reduced Einstein viscosity correction. However, note
that a half-half slip–stick sphere does move in a simple shear flow.

As mentioned in § 1, we expect hydrodynamically Janus particles to exist in various
physical settings. In particular, amphiphilic Janus particles may behave as slip–stick
particles with slip lengths potentially of the order of the particle size (Boehnke
et al. 1999). This should enable the experimental verification of the dynamical and
rheological characteristics predicted in this paper. However, we also anticipate
that such studies may be hindered by aggregation of the Janus spheres and their
accumulation at interfaces. At the very least, nonetheless, we hope that the present
work will aid in the understanding of the low-Reynolds-number hydrodynamics of
amphiphilic Janus particles.

The authors wish to thank Dr L. G. Leal, Dr D. T. Leighton and Dr T. M. Squires
for helpful discussions.

Appendix A
In this appendix, we derive analytical expressions for the scalars in linearity

equations (2.5), (2.6) and (4.3), in the limit β = λ/a � 1 via a regular perturbation
expansion.

We pose a perturbation expansion of the velocity and pressure fields in the small
parameter β

u = u(0) + βu(1) + β2u(2) + · · ·,
(A 1)

p = p(0) + βp(1) + β2p(2) + · · ·.

In the analysis that follows we assume that the director d of the sphere is oriented
along the positive x3 axis (i.e. di = δi3), while the ambient velocity field ω∞ × x + E∞ · x
is arbitrary. Note that this assumption is made only in this appendix, since it renders
convenient the computation of the scalars contained in the linearity expressions
developed in § 2.

Let us first solve the zeroth-order problem (β =0) when the entire surface of the
sphere obeys the no-slip condition. The governing equations are Stokes equations
(2.1).

μ0∇2u(0) − ∇p(0) = 0, and ∇ · u(0) = 0. (A 2)
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The boundary conditions in (2.2)–(2.4) assume a simple form in the absence of the
slipping portion of the sphere.

u(0) → ω∞ × x + E∞ · x as r → ∞, (A 3a)

u(0) = U + ω × x at r = a, (A 3b)

where r =
√

x · x. The velocity field at the zeroth order is, by linearity, the sum of the
separate contributions of the velocity fields resulting from a no-slip sphere translating
with a velocity U and rotating with an angular velocity ω in an ambient linear flow
ω∞ × x + E∞ · x. These individual velocity fields are available in many standard
textbooks on fluid mechanics (e.g. Leal 2007), and are combined as follows:

u(0) =
1

4

(
3
a

r
+

a3

r3

)
U +

3

4

(
a

r3
− a3

r5

)
(U · x) x +

a3

r3
ω × x +

(
1 − a5

r5

)
E · x

−5

2

(
a3

r5
− a5

r7

)
(E : xx) x +

(
1 − a3

r3

)
1

2
ω∞ × x. (A 4)

The force, torque and stresslet are, to leading order,

F(0) = −6πμ0aU,

T (0) = −8πμ0a
3 (ω − ω∞) ,

S(0) =
20

3
πμ0a

3 E∞. (A 5)

Let us now examine the first effects of slip on the force, torque and stresslet. The
governing equations and boundary conditions at O(β) are

μ0∇2u(1) − ∇p(1) = 0, and ∇ · u(1) = 0. (A 6)

The far-field boundary condition is quite straightforward

u(1) → 0, as r → ∞. (A 7)

The velocity field on the slip–stick sphere surface may be written as

u(1) = 2a [1 − H (θ − α)] (I − nn) · E(0) · n. (A 8)

where

E(0) =
1

2
[∇u(0) + (∇u(0))T]. (A 9)

Here H is the Heaviside step function and is used to demarcate the slip (θ � α) and
no-slip (θ > α) portions of the sphere.

To solve for the O(β) flow we invoke Lamb’s general solution for Stokes equations
(e.g. Kim & Karrila 2005). Since the disturbance velocity field u(1) is exterior to the
sphere and vanishes at infinity, we employ only the decaying spherical harmonics for
the velocity and pressure fields

p(1) =

∞∑
n=1

P−n−1, (A 10)

u(1) =

∞∑
n=1

[
− (n − 2)r2

2μ0n(2n − 1)
∇P−n−1 +

(n + 1)p−n−1x
μ0n(2n − 1)

]

+

∞∑
n=1

[∇Φ−n−1 + ∇× (xχ−n−1)] , (A 11)
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where

P−n−1 = r−n−1

n∑
m=0

P m
n (cos θ)

(
Amn cosmφ + Ãmn sinmφ

)
,

Φ−n−1 = r−n−1

n∑
m=0

P m
n (cos θ)

(
Bmn cos mφ + B̃mn sinmφ

)
, (A 12)

χ−n−1 = r−n−1

n∑
m=0

P m
n (cos θ)

(
Cmn cos mφ + C̃mn sinmφ

)
.

To implement the boundary conditions, we match the radial velocity, the surface
divergence and the surface curl on the sphere surface r = a

u(1)
r =

∞∑
n=1

(n + 1) aP−n−1

2μ0 (2n − 1)
− (n + 1)

a
Φ−n−1 = 0, (A 13a)

−2u(1)
r − 1

sin θ

∂

∂θ

(
u

(1)
θ sin θ

)
− 1

sin θ

∂u
(1)
φ

∂φ

= − 1

sin θ

∂

∂θ

[
[1 − H (θ − α)] E

(0)
θr sin θ

]
− [1 − H (θ − α)]

sin θ

∂E
(0)
φr

∂φ

=

∞∑
n=1

−n (n + 1) aP−n−1

2μ0 (2n − 1)
+

(n + 1) (n + 2)

a
Φ−n−1, (A 13b)

1

sin θ

∂

∂θ

(
u

(1)
φ sin θ

)
− 1

sin θ

∂u
(1)
θ

∂φ

=
1

sin θ

∂

∂θ

[[
1 − H (θ − α)

]
E

(0)
φr sin θ

]
− [1 − H (θ − α)]

sin θ

∂E
(0)
θr

∂φ

=

∞∑
n=1

n (n + 1) χ−n−1. (A 13c)

The surface curl and divergence involve differentiation of the Heaviside step function
with respect to the polar angle θ , which results in a Dirac-Delta function at θ = α.
It should be noted that this is a non-trivial aspect of using a discontinuous surface
velocity field in Lamb’s solution.

The force, torque and stresslet on the sphere at this order may be computed from
the following simple formulae (Kim & Karrila 2005):

F(1) = −4π∇
(
r3p−2

)
,

T (1) = −8πμ0∇
(
r3χ−2

)
,

S(1) = −2π

3
∇∇

(
r5p−3

)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A 14)

It can be shown in a relatively straightforward manner that the evaluation of
the force, torque and stresslet involves calculation of the following constants only:
A01, A11, Ã11, C01, C11, C̃11, A02, A12, Ã12, A22 and Ã22. These constants are computed
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by invoking the orthogonality property of spherical harmonics∫ 2π

0

∫ π

0

P m1
n1

(cos θ) cos (m1φ) P m2
n2

(cos θ) cos (m2φ) sin θ dθ dφ

=

∫ 2π

0

∫ π

0

P m1
n1

(cos θ) sin (m1φ) P m2
n2

(cos θ) sin (m2φ) sin θ dθ dφ

=
2π(n1 + m1)!

(2n1 + 1)!(n1 − m1)!
δm1m2

δn1n2
, (A 15a)∫ 2π

0

∫ π

0

P m1
n1

(cos θ) cos (m1φ) P m2
n2

(cos θ) sin (m2φ) sin θ dθ dφ = 0. (A 15b)

Application of the above orthogonality relationships on the boundary conditions
yields simultaneous algebraic equations involving the constants, which may be solved
to yield the individual constants themselves.

Since the slip–stick sphere is force and torque free, we can write

F(0) + β F(1) = 0,

T (0) + βT (1) = 0.

}
(A 16)

From linearity, we expect that the six equations in (A1̇6) will be simultaneous in the
six components (three each) of the sphere’s translational and rotational velocities,
and can therefore be solved easily to yield U and ω. All the algebraic computations
in this paper have been performed using the symbolic toolbox in MATLAB.

We are now in a position to determine the scalars B , f1, f2, g1, g2 and g3. The
slip–stick sphere is placed in different standard linear flows, and the translational
velocity, rotational velocity and the particle stress calculated from (A 14) and (A 16)
are compared with the expected results from the linear relations [(2.5), (2.6) and (4.3)]
to yield the scalar constants in those equations. Recall that throughout this section, we
have chosen the director to be along the x3 axis. Employing the linear equations in (2.5)
and (2.6), the translational and angular velocities of the sphere in this orientation are

Ui = aβ
(
f1E

∞
i3 + f2δi3E

∞
33

)
, ωi = ω∞

i + βBεi3kE
∞
k3. (A 17)

Consider the slip–stick sphere placed in the simple shear flow u∞
3 = γ̇ x1. For this

field,

E∞ =
γ̇

2

(
δi3δj1 + δi1δj3

)
and ω∞

i = −1

2
γ̇ δi2. (A 18)

From linearity relationship (2.5), the angular velocity of the sphere in this orientation is

ωi = ω∞
i + βBεi3kE

∞
k3. (A 19)

Clearly, ω1 =ω3 = 0, while ω2 is given by

ω2 = − γ̇

2
+ βB

γ̇

2
. (A 20)

Knowing the form of ω2 from linearity for this particular orientation of the sphere
and the imposed flow, one can compare it to the result from the solution of (A 16)
to evaluate B as

B = −15

16
sin2 α cosα. (A 21)
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In the same (simple shear) flow field, the translational velocity Ui of the sphere is

Ui = aβ
γ̇

2
f1δi1. (A 22)

Again, Ui can be calculated from the perturbation expansion, and this yields f1 as

f1 = −5

8
sin2 α

(
1 + cos2 α

)
. (A 23)

To obtain f2, we place the sphere in the planar extensional flow described by

E∞ = γ̇
(
δi1δj1 − δi3δj3

)
and ω∞

i = 0. (A 24)

The translational velocity of the sphere in this field is given by

Ui = −aβγ̇ (f1 + f2) δi3. (A 25)

Now, separately, from the solution of (A 16), U3 is obtained as

U3 =
15

16
aβγ̇ sin4 α. (A 26)

Therefore, f2 as determined from (A 23), (A 25) and (A 26) is

f2 =
5

16
sin2 α(−5 sin2 α + 4). (A 27)

Consider now the expression for the particle stresslet in (4.3)

〈Sij 〉 =
20π

3
μ0a

3E∞
ij +

4π

3
μ0a

3β

[
g1E

∞
ij + g2

(
δi3δj3 − δij

3

)
E∞

33

+ g3

(
δi3E

∞
j3 + δj1E

∞
i1 − 2δij

3

)
E∞

33

]
. (A 28)

In the simple shear flow defined in (A 18), the component 〈S13〉 of the traceless stresslet
is given by

〈S13〉 =
10π

3
a3μ0γ̇ +

2π

3
a3μ0γ̇ β (g1 + g3) . (A 29)

This component can be evaluated from the perturbation expansion scheme, resulting
in

g1 + g3 = −15

8
(1 − cos α)

(
4 cos4 α + 4 cos3 α − cos2 α − cos α + 4

)
. (A 30)

When subjected to the planar extensional flow defined in (A 24), two more equations
containing g1, g2 and g3 may be obtained

〈S11〉 − 〈S22〉 =
20π

3
a3μ0γ̇ +

4π

3
a3μ0γ̇ βg1,

= −5

2
πβa3μ0γ̇ (1 − cos α)2(cos3 α + 2 cos2 α + 3 cosα + 4) (A 31)

〈S22〉 =
4π

9
a3μ0γ̇ β(g2 + 2g3) = −25

4
πβa3μ0γ̇ cos α sin4 α. (A 32)
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Solving the three simultaneous equations (A 30)–(A 32) for g1, g2 and g3, we
find

g1 = −15

8
(1 − cosα)2

(
cos3 α + 2 cos2 α + 3 cos α + 4

)
, (A 33)

g2 =
75

16
cos α sin2 α

(
7 cos2 α − 3

)
, (A 34)

g3 = −75

8
cos3 α sin2 α. (A 35)

Appendix B
In this appendix, we present the grand resistance matrix for the slip–stick sphere.

As described in Kim & Karrila (2005), for a rigid particle placed in a linear ambient
field under creeping flow conditions, there exists a linear relationship between the
force moments and the flow parameters

⎛
⎜⎝

F

T

S

⎞
⎟⎠ = μ0

⎛
⎜⎜⎝

A B̃ G̃

B C H̃

G H M

⎞
⎟⎟⎠

⎛
⎜⎝

U∞ − U

ω∞ − ω

E∞

⎞
⎟⎠ . (B 1)

The square matrix in the above equation is termed as the grand resistance matrix.
For an axisymmetric body with a director d, the submatrices involved in the grand
resistance matrix are

Aij = XAdidj + Y A(δij − didj ) (B 2)

Bij = B̃ji = Y Bεijkdk (B 3)

Cij = XCdidj + Y C(δij − didj ) (B 4)

Gijk = G̃kij = XG(didj − 1
3
δij )dk + Y G(diδjk + djδik − 2didjdk) (B 5)

Hijk = H̃kij = Y H (εikldj + εjkldi)dl (B 6)

Mijkl = XMd
(0)
ijkl + Y Md

(1)
ijkl + ZMd

(0)
ijkl (B 7)

where

d
(0)
ijkl = 3

2

(
didj − 1

3
δij

) (
dkdl − 1

3
δkl

)
,

d
(1)
ijkl = 1

2

(
diδjldk + djδildk + diδjkdl + djδikdl − 4didjdkdj

)
,

d
(2)
ijkl = 1

2

(
δikδjl + δjkδil − δij δkl + didj δkl + δijdkdl − diδjldk

−djδildk − diδjkdl − djδikdl + didjdkdj

)
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(B 8)
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Using the method outlined in appendix A, the scalar functions X, Y and Z may be
determined to leading order in β as

XA = 6πa

[
1 − β

4
(cosα + 2)(1 − cosα)2

]

Y A = 6πa

[
1 − β

8
(1 − cos α)(cos2 α + cosα + 4)

]
Y B = 9

2
πβa2 sin2 α

XC = 8πa3

[
1 − 3β

4
(cos α + 2)(1 − cosα)2

]

Y C = 8πa3

[
1 − 3β

8
(1 − cosα)(cos2 α + cosα + 4)

]
XG = − 45

8
πβa2 sin4 α

Y G = − 15
8

πβa2 sin2 α(1 + cos2 α)

Y H = − 15
2

πβa3 sin2 α cos α

XM =
20

3
πa3

[
1 − 3β

4
(3 cos3 α + 6 cos2 α + 4 cosα + 2)(1 − cos α)2

]

Y M =
20

3
πa3

[
1 +

3β

8
(4 cos4 α + 4 cos3 α − cos2 α − cosα + 4)(1 − cos α)

]

ZM =
20

3
πa3

[
1 − 3β

8
(cos3 α + 2 cos2 α + 3 cosα + 4)(1 − cos α)2

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 9)

It is possible to derive all the scalars in table 1 using the above resistance matrices,
but we will not show that here. As a quick test, however, we demonstrate that the
Bretherton constant obtained from the two methods is consistent. The Bretherton
constant as defined in Kim & Karrila 2005 is equal to Y H/Y C . To leading order in
β , from the above equations, this ratio is −(15/16)β sin2 α cos α, which is identical to
βB with B as defined in table 1.

Appendix C
In this appendix, we offer a verification of the analysis used to determine the

elements of the grand resistance matrix in Appendix B and the scalar functions in
table 1, by employing the Lorentz reciprocal theorem to derive the resistance matrices
relating force to translation and rotation.

In the absence of external body forces, the reciprocal theorem states that the
velocity fields u and associated stress tensors σ for two Stokes flows (labelled A and
B) in the same domain are related via (Happel & Brenner 1965)∫

uA · σ B · n dS =

∫
uB · σ A · n dS. (C 1)

Here, the domain is taken to be that exterior to a sphere of radius a in an
unbounded fluid, and the integrals are over the surface of the sphere, with n the
outward pointing unit normal. First, for the A-flow we consider a no-slip sphere
translating with velocity UA, for which the traction is simply σ A · n = − (3μ0/2a)UA.
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Thus, the drag force FB in the second Stokes flow problem is given by

FB =
3μ0

2a

∫
uB dS. (C 2)

For the B-flow, we take a slip–stick sphere translating with velocity UB. On the
surface of the sphere the fluid velocity is given by the Navier slip condition,

uB = UB + 2aβ EB · n, (C 3)

where EB is the rate-of-strain tensor in the B-flow. Substituting (C 3) into (C 2) yields

FB = −6πμ0aUB − 3μ0β

∫
S2

EB · n dS, (C 4)

where the integral is over the slipping part S2 of the sphere only (figure 1) . To
proceed, we note that the second term on the right-hand side of (C 4) is already an
O(β) quantity. Therefore, in the integrand one requires EB to only zeroth order in β ,
which is simply the rate-of-strain tensor for a no-slip sphere translating with velocity
UB (cf. A 4). In this case, on the surface EB · n = − (3/4a)(I − nn) · UB, and after a
little algebra we find∫

S2

(I − nn) dS =
πa2

3
(4 − 3 cosα − cos3 α)I − πa2 cos α sin2 αdd. (C 5)

Substituting the above into (C 4) yields

FB

6πμ0a
=

[(
1 − β

8

(
4 − 3 cosα − cos3 α

))
I − 3β

8
cos α sin2 αdd

]
· UB

=

[(
1 − β

4
(cosα + 2)(1 − cos α)2

)
dd

+

(
1 − β

8

(
4 − 3 cosα − cos3 α

))
(I − dd)

]
· UB, (C 6)

which is exactly the force-translation relation contained in the grand resistance matrix
(cf. the functions XA and Y A in (B 9)).

Now, to derive the force-rotation coupling, for the B-flow we consider a slip–stick
sphere rotating with angular velocity ωB. On the surface the fluid velocity is

uB = ωB × r + 2aβ EB · n. (C 7)

Substituting (C 7) into (C 2), we find

FB = −3μ0β

∫
S2

EB · n dS. (C 8)

For the reasons explained above, inside the integrand we take EB as the rate-of-
strain tensor of a no-slip sphere rotating with angular velocity ωB (cf. A 4). Thus, at
r = a, EB · n = − (3/2)ωB × n, and∫

S2

ωB × n dS = πa2(1 − cos2 α)ωB × d. (C 9)

Substituting the above into (C 8) we arrive at the force–rotation relation

FB =
9

2
πμ0a

2β(1 − cos2 α)ωB × d, (C 10)



Dynamics and rheology of slip–stick spheres 267

as per the resistance function Y B in (B 9).

Appendix D
In this appendix, we show explicitly that the trace of the particle stress tensor is

zero. Consider the stress vector σ · n acting on the surface of the sphere (r = a) as
given by Happel & Brenner (1965)

σ · n =
μ0

r

∞∑
n=1

[−(n + 2)∇ × (xχ−n−1) − 2(n + 2)∇Φ−n−1

−2n2 − 4n + 1

μ0n(2n − 1)
xp−n−1 +

(n + 1)(n − 1)

μ0n(2n − 1)
r2∇p−n−1

]
. (D 1)

In order to calculate the trace of the force dipole, we require the expression for
x · σ · n at r = a, which may be obtained from the above equation as

x · σ · n =
μ0

r

∞∑
n=1

[−(n + 2)x · ∇ × (xχ−n−1) − 2(n + 2)x · ∇Φ−n−1

−2n2 − 4n + 1

μ0n(2n − 1)
r2p−n−1 +

(n + 1)(n − 1)

μ0n(2n − 1)
r2x · ∇p−n−1

]
. (D 2)

Now, since

x · ∇ × (xχ−n−1) = 0,

x · ∇Φ−n−1 = −(n + 1)Φ−n−1, (D 3)

x · ∇p−n−1 = −(n + 1)p−n−1,

(D 2) simplifies to

x · σ · n =
μ0

a

∞∑
n=1

[
2(n + 1)(n + 2)Φ−n−1 − n2 + 3n − 4

μ0(2n − 1)
a2p−n−1

]
. (D 4)

The trace of the force dipole is, therefore,∫
S

x · σ · n dS =
μ0

a

∞∑
n=1

[
2(n + 1)(n + 2)

∫
S

Φ−n−1dS − n2 + 3n − 4

μ0(2n − 1)
a2

∫
S

p−n−1dS

]
.

(D 5)

The two integrals on the right-hand side of the above equation can readily be shown
to vanish for n � 1. Hence, the trace of the force dipole is identically zero.
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